Influence of Topping, Side Branch Pruning and Hill Spacing on Growth and Development of Cotton (*Gossypium barbadense* L.) in the Southern Guinea Savanna Location of Nigeria

M. O. Obasi^{*1}, T. S. Msaakpa²

Abstract

Two field experiments were carried out at the Teaching and Research Farm, University of Agriculture, Makurdi, Nigeria, during 2000 and 2001 seasons on Pima S2 cotton cultivar, to study the effects of hill spacing of 30, 35 and 40cm (plant population) and plant growth alteration treatments i.e. topping, side branch pruning at 120cm height, topping + pruning at 100cm height, topping + pruning at 120cm height on some vegetative and fruiting habits, earliness and seed cotton yield and its components.

Generally the combined data clarified that wider hill spacing increased number of monopodia, main stem internodes, sympodia, additional fruiting branch bolls, retended bolls, fruiting sites, percentage of bolls on vegetative branches, open bolls, boll weight and seed cotton yield. While it decreased final plant height, number of aborted sites, days to first open boll, earliness percentage and number of unopen bolls. However, plant alteration treatments had a positive effect on most studied traits and reversely depressed number of monopodia, aborted sites and earliness percentage compared with the control. Within plant alteration treatments, there were significant divergences. The results indicated that topping plants at 120cm height increased number of retended bolls, fruiting sites, days to first open boll, open boll, unopen bolls and seed cotton yield. Side branch pruning at 120cm height increased final plant height, monopodia, main stem internodes, sympodia, earliness percentage and boll weight. Topping +pruning at 100cm height only decreased number of aborted sites. Topping + pruning at 120cm height increased additional fruiting branch bolls, percentage of bolls on vegetative branches, boll weight and seed cotton yield. Topping at 120cm height and 40cm hill spacing resulted in the highest number of retended bolls and seed cotton yield.

Keywords: cotton, Gossypium barbadense, hill spacing, topping, side branch pruning, Nigeria

^{*} corresponding author

¹ Dr. M. O. Obasi, Department of Crop Production, University of Agriculture, P.M.B. 2373, Makurdi, Nigeria.

² Mr. T. S. Msaakpa, Department of Seed Science.

1 Introduction

Lodging in cotton plant is known to vary according to nature of varietal growth, nutritional and environmental conditions. In this respect, removing the terminal main stem bud (topping) and side pruning of branches are considered as important adjustment for plant geometry of cotton plants grown on fertile soils of high nitrogen rates whether under dense or low plant population to eliminate lodging. HOSNY et al. (1995) reported that lint yield increased due to topping of cotton plants. NAGUIB et al. (1987) found that topping of Pima cotton at 15 days intervals (starting from mid July) decreased plant height and number of main stem nodes, increased boll set on top sympodia and caused additional branch nodes and bolls on top of fruiting branches. However, topping did not affect boll weight, lint yield and days to boll maturity, and was less effective when applied later in the season. EL-GANAYNI et al. (1984) found that topping at 15 days intervals later in the season produced the highest seed cotton yield while boll weight was not affected by topping. ROY et al. (1989) topped cotton plants after 45, 60 and 75 days from emergence at different plant populations. Their results indicated that one plant per hill at spacing of 60×30 cm produced the highest seed cotton yield whereas the topping at 60 days produced the highest yield. The interaction effect showed that two plants per hill spaced 60×20 cm and topped at 45 days gave the highest seed cotton yield whereas the lowest one was 89 obtained by two plants per hill at spacing of $63 \times$ 20cm and topped at 75 days after emergence.

Considerable data have been collected on the effects of fruit structure removal on growth and yield of cotton. KENNEDY et al. (1991) indicated that prolonged removal of fruiting structures (i.e. flower buds or young bolls) increased plant size, plant height, number of sympodial branches and fruit set. AHMED and ABDEL-AL (1990) deflowered cotton plants cv. Giza 81 (leaving one flower every 2, 3, 4, 5 or 7 days) which showed positive response for plant height, number of inter-nodes and boll weight but negative response with number of open bolls and seed cotton yield per plant. The basal 3, 5 or 7 fruiting branches of cotton plants were removed at square stage by GU BENKANG et al. (1990) and forty days after treatment they found that the number of sympodia per plant gradually decreased in the three treatments compared with the control. However, seed cotton yield was increased particularly when 3 fruiting branches were removed. Also, the number of fruiting nodes was not affected, while the squares and young bolls shedding were decreased and boll number per plant was increased by the treatments. KENNEDY et al. (1991) observed that removal of early squares delayed the initiation of fruiting and crop maturity whereas fruiting occurred more rapidly with prolonged fruiting period in the growing season. Thus, the effect of square removal on seed cotton yield was variable from year to year. PETTIGREW (1994) applied partial fruit pruning and found 16% greater boll mass than the control. The objective of this study was to characterize the growth and development of the plants of cotton cultivar Pima - S2 topped and pruned at different plant populations; plant height and under higher nitrogen level of 200kg ha⁻¹ at Makurdi, Nigeria.

2 Materials and Methods

2.1 Experimental Design and Treatments

Two field experiments were conducted on Pima-S2 cotton cultivar (*Gossypium barbadense* L.) in 2000 and 2001 seasons at the Teaching and Research farm of the University of Agriculture, Makurdi, located at Lat. 7.41° N and long. 8.37° E and 97m above mean sea level. The location falls within the southern guinea savanna agroecological zone of Nigeria. The experiment was set up in split plot design with four replications. The main plots were assigned to plant population in the term of hill spacing, i.e. 30, 35 and 40cm, while the subplots were occupied with plant alteration treatments as: topping at 120cm height, side branch pruning when plants reached 120cm height; topping + side branch pruning when plants reached 100cm height, and topping + side branch pruning when plants reached 120cm height besides the control (normal plants). Topping as well as side branch pruning were made by hand cutting of the terminal bud of main stem and monopodia or squares of sympodia along the plant up to the determined height, respectively. The plot size was $38.25m^2$, including 5 ridges 65cm apart and 5m long.

2.2 Cultural Practices

Four cotton seeds were sown per hill on 25^{th} May 2000 and 1^{st} June 2001. Calcium ammonium nitrate at 200kg N ha⁻¹ was applied split at 3 and 8 weeks after sowing. Boronated superphosphate at 140kg P_2O_5 ha⁻¹ was added during land preparation without K fertilizer in order to create imbalanced fertilization which may induce more vegetative growth. Thinning to two seedlings per stand was done three weeks after sowing. The cotton plots were weeded manually twice before the second fertilizer application and at 50% of split boll. The plants were sprayed forthnightly with carbaryl (1-naphthyl methylcarbamate) insecticide at the rate of 1.1kg chemical per 225 litres of water per hectare starting from 9 weeks after sowing to minimize insect damage by bollworms, boll weevils, leaf rollers, stainers, grasshoppers and aphids.

2.3 Measurements

Ten guarded plants from the three inner ridges of each plot were randomly chosen at the end of the season to determine the following criteria:

- (1) **Vegetative growth habits:** final plant height (cm); number of monopodia and number of main stem internodes per plant.
- (2) Fruiting growth habits: number of sympodia, additional fruiting branch bolls, number of aborted sites, number of retended bolls (additional fruiting branches: bolls + opened + unopened bolls) and number of fruiting sites (aborted sites + bolls retended).
- (3) Earliness measurements: days to first open boll; percentage of bolls on vegetative branches (number of bolls produced on fruiting branches arising from vegetative side branches, expressed as a percentage of total number of bolls produced) and earliness percentage = <u>firstpicking</u> <u>first-secondpicking×100</u>

(4) Seed yield and its components: number of open bolls, number of unopen bolls; boll weight and seed cotton yield (t ha⁻¹).

The interaction effects between plant population and plant alteration treatments on the above mentioned traits were also studied.

2.4 Statistical analysis

All data collected were analysed statistically using the analysis of variance procedure described by STEEL and TORRIE (1980). The mean values were compared at the 5% level of significance (SNEDECOR and COCHRAN, 1967).

3 Results and Discussion

3.1 Influence of Plant Population (hill spacing)

Data presented in Tables 1 - 4 exhibited pronounced effect of plant population (hill spacing) on both vegetative and fruiting habits; earliness measurements and seed cotton yield and its components for the combined data. Final plant characteristics indicated that wide hill spacing significantly increased final plant height, number of monopodia. main stem internodes, sympodia additional fruiting branch bolls, retended bolls, fruiting sites, percentage of bolls on vegetative branches, number of open bolls, boll weight and seed cotton yield (t ha⁻¹). On the other hand, narrow hill spacing markedly increased number of aborted sites, days to first open boll, earliness percentage and number of unopen bolls. These results could be ascribed to the basis that dense stands (narrow hill spacing) increase between-plant and within-plant competition resulting to more susceptible plants with more demand for sunlight, water and nutrients. So, the end result of this competition is taller plants with more boll infestation and more shedding of reproductive forms and this is accompanied by the lack of boll formation and opening. predisposing it to delay in maturation and finally yield reduction. These results are in agreement to those obtained by GUTHRIE and MCCARTY (1993) and MAKRAM et al. (1994) for plant height, number of main stem internodes: NIKOLOV (1980) for number of monopodia; ABDEL-MALIK et al. (1995) for number of sympodia, number of bolls retended, aborted sites, fruiting sites, percentage of bolls on vegetative branches and earliness percentage and RISHA (1993) for number of open and unopen bolls, boll weight and seed cotton yield.

3.2 Influence of Plant Growth Alteration Treatment (Topping) and Side Branch Pruning

3.2.1 Vegetative growth habits

The combined data presented in Table 1 showed that topping and side branch pruning had a highly significant effect on this group of characters. It is obvious that topping cotton plants at a certain height i.e. 100cm or 120cm ceased plant height up to this limit of growth. On the other hand, side branch pruning only enhanced cotton plants for growth continuity resulting in tallest plants with highest main stem node number followed descendingly by the control and both topping + side branch pruning at 120cm respectively. Number of monopodia was depressed as topping, side branch pruning or

 Table 1: Effect of hill spacing and plant growth alteration treatments and their interaction on vegetative growth habits of Pima S2 cotton cultivar (combined data of 2000 and 2001 seasons).

Vegetative		Plant Density (D)				$D \times A$				
growth habits	Season		nill spacii 35cm		Control	Т* 120ст	SBP† 120cm	T+SBP 100cm	T+SBP 120cm	interact.
Final plant height (cm)	2000	127.21	127.01	125.88b	141.57b	120.00c	148.90a	100.00d	120.00c	*
	2001	128.08	127.28	126.48b	143.01b	120.00c	150.34a	100.00d	120.00c	**
	comb.	127.65	127.15	126.18b	142.29b	120.00c	149.62a	100.00d	120.00c	**
Number of	2000	0.31c	0.46b	1.04a	0.91a	0.55c	0.68b	0.41e	0.48d	**
monopodia	2001	0.37c	0.60b	1.37a	1.09a	0.73c	0.84b	0.57d	0.68c	**
	comb.	0.34c	0.53b	1.21a	1.00a	0.64c	0.76b	0.49d	0.58c	**
Number of main stem internodes	2000	24.54b	24.54b	25.94a	27.57b	23.57c	29.34a	21.01d	23.57c	NS
	2001	25.41b	25.34b	27.01a	28.79b	24.12c	30.90a	21.45d	24.34c	NS
memodes	comb.	24.98b	24.94b	26.48a	28.18b	23.85c	30.12a	21.23d	23.96c	NS

* T 120cm: topping at 120cm height

[†] SBP 120cm: side branch pruning at 120cm height

**,* and NS indicate P < 0.01, 0.05 and not significant, respectively.

Means followed by the same letter are not significantly different at 0.05 level according to L.S.D. test.

both were applied compared with the control. Irrespective to the control, side branch pruning at 120cm had the highest monopodia while topping + side branch pruning at 100cm gained the lowest one leaving topping at 120cm height in between values. These results could be ascribed to the basis that topping cotton plants usually ultimates plant height at a specific or a required height bases on determining vertical growth as apical dominance is intercepted while fruiting capacity is enhanced, modifying plant geometry into cone shape. As side branch pruning was applied, plant geometry was also modified but into arrow-like shape, whereas the unpruned top sympodial branches (above 120cm height) grew vertically and horizontally up to the end of season. Similar results were obtained by AHMED and ABDEL-AL (1990) for plant height and main stem nodes and KENNEDY *et al.* (1991) for plant size and plant height.

3.2.2 Fruiting growth habits

Results presented in Table 2 revealed that cotton plants pruned to plant growth alteration treatments significantly exceeded those of control plants concerning this group of traits except for number of aborted sites whereas the superiority was assigned to the check plants. Cotton plants exposed to side branch pruning significantly surpassed those of both topping + side branch pruning at 120cm and topping at 120cm and topping + side branch pruning at 100cm height in descending order. Concerning additional fruiting branch bolls which arise besides the principal or on the bottom of sympodial branches, were significantly higher on plants pruned to topping + side branch pruning at 120cm followed descendingly by those exposed to topping + side branch pruning at 100cm height. Cotton plants topped and pruned at 100cm height had the

Table 2: Effect of hill spacing and plant gro	wth alteration treatments and their inter-
action on fruiting growth habits of	Pima S2 cotton cultivar (combined data of
2000 and 2001 seasons).	

Fruiting		Plant Density (D)				$D \times A$				
growth habits	Season	<u> </u>	nill spacin	- /	Control	Т* 120ст	SBP† 120cm	T+SBP 100cm	T+SBP 120cm	interact.
habits		30cm	35cm	40cm		120011	120011	100011	120011	
Number of	2000	15.68c	17.74b	19.94a	20.23b	16.12c	22.34a	13.79d	16.45c	NS
sympodia	2001	16.41c	18.34b	20.94a	21.45b	16.79c	23.57a	14.12d	16.90c	NS
	comb.	16.05c	18.04b	20.44a	20.84b	16.46c	22.96a	13.96d	16.68c	NS
Additional	2000	3.10c	4.14b	5.58a	2.74e	3.69d	4.61c	4.93b	5.40a	NS
branch nodes	2001	3.28c	4.29b	5.79a	2.93e	3.84d	4.80c	5.09b	5.60a	NS
	comb.	3.19c	4.22b	5.69a	2.84e	3.77d	4.71c	5.01b	5.50a	NS
Number of	2000	47.15c	51.32b	59.95a	52.47b	56.70a	52.34b	49.30c	53.22b	NS
fruiting sites	2001	48.04c	51.99b	60.07a	52.98b	57.52a	52.95b	49.90c	53.48b	NS
	comb.	47.60c	51.66b	60.01a	52.73b	57.11a	52.65b	49.60c	53.45b	NS
Number of	2000	12.74a	12.47ab	12.31b	21.51a	10.93b	10.51b	8.98c	10.61b	NS
aborted sites	2001	13.28a	12.68b	12.88c	21.34a	11.23b	10.68b	9.12c	10.68b	NS
	comb.	13.01a	12.58ab	12.60b	21.43a	11.08b	10.60b	9.05c	10.65b	NS
Number of	2000	33.32c	36.73b	44.08a	30.23d	44.10a	39.24b	37.41c	39.23	**
retended bolls	2001	33.70c	37.04b	44.42a	30.72d	44.47a	39.50b	37.71c	39.55	**
	comb.	33.51c	36.89b	44.25a	30.48d	44.29a	39.37b	37.56c	39.39	**

* T 120cm: topping at 120cm height

[†] SBP 120cm: side branch pruning at 120cm height

**,* and NS indicate P < 0.01, 0.05 and not significant, respectively.

Means followed by the same letter are not significantly different at 0.05 level according to L.S.D. test.

highest aborted sites followed descendingly by topping at 120cm, side branch pruning at 120cm and topping + side branch pruning at 120cm.

Regarding number of retended bolls and fruiting sites, the superiority was valued for plants pruned to topping at 120cm followed by both side branch pruning at 120cm and topping + side branch pruning at 120cm and topping + side branch pruning at 100cm in descending order. From the above mentioned results, one of the most interesting observations was that the removal of the apical bud resulted in a large accumulation of assimilates in the root system, which suggests that there is an increase in the flow of nutrients to the sinks and consequently more assimilates towards the old fruits or for initiating new and additional fruits (EL-DEBABY *et al.*, 1995). Also, a combination of topping and pruning or pruning alone was probably involved including: better light penetration into plant canopy, increased air circulation among plants resulting in an improved CO_2 supply for photosynthesis (WAGGONER and MOSS, 1963), lower humidity, and a reduction in the amount of boll infestation on early set fruit (BENNETT *et al.*, 1965). Such results were obtained by KITTOCK and FRY (1977) for boll set and additional branch bolls, by KENNEDY *et al.* (1991) for number of sympodia and fruit set and Gu BENKANG *et al.* (1990) for aborted sites and fruiting sites. Table 3: Effect of hill spacing and plant growth alteration treatments and their inter-
action on earliness traits of Pima S2 cotton cultivar (combined data of 2000
and 2001 seasons).

Earliness		Plant Density (D)			Plant growth alteration (A)					$D \times A$
traits	Season	(h 30cm	ill spacir 35cm	ng) 40cm	Control	Т* 120ст	SBP† 120cm	T+SBP 100cm	T+SBP 120cm	interact.
Days to first	2000	124.4a	123.5b	123.1b	126.4a	123.5b	123.0c	122.3d	123.0c	NS
open boll	2001	124.6a	123.8b	123.4b	126.7b	123.7b	123.3c	122.6a	123.3c	NS
	comb.	124.5a	123.7b	123.3b	123.6b	123.6b	123.2c	122.5d	123.2c	NS
Percentage of	2000	6.52c	7.72b	17.19a	7.40d	11.67b	9.69c	11.67b	12.32a	**
bolls on vege- tative branches	2001	6.86c	8.00b	17.98a	7.82d	12.16b	9.99c	11.94b	12.68a	**
tative branches	comb.	6.69c	7.86b	17.59a	7.61d	11.92b	9.84c	11.81b	12.50a	**
Earliness	2000	70.95a	69.26b	60.92b	73.21a	64.96c	67.36b	66.53b	63.52d	**
percentage	2001	69.13a	68.03a	59.98b	70.97a	64.38c	66.39b	64.88c	62.32d	**
	comb.	70.04a	68.65a	60.45b	72.09a	64.67c	66.88b	65.71c	62.92e	**

* T 120cm: topping at 120cm height

[†] SBP 120cm: side branch pruning at 120cm height

**,* and NS indicate $\mathsf{P} < 0.01, 0.05$ and not significant, respectively.

Means followed by the same letter are not significantly different at 0.05 level according to L.S.D. test.

Table 4: Effect of hill spacing and plant growth alteration treatments and their inter-
action on seed cotton yield and yield components of Pima S2 cotton cultivar
(combined data of 2000 and 2001 seasons).

Fruiting		Plant Density (D)			$D \times A$					
growth habits	Season	(h 30cm	ill spacir 35cm	ag) 40cm	Control	Т* 120ст	SBP† 120cm	T+SBP 100cm	T+SBP 120cm	interact.
Number of	2000	17.62c	22.55b	30.99a	20.79d	26.92a	23.99c	21.40d	25.49b	**
open bolls	2001	18.15c	23.06b	31.55a	21.41d	27.43a	24.49c	21.80d	26.01b	**
	comb.	17.89c	22.81b	31.27a	21.10d	27.18a	24.24c	21.60d	25.75b	**
Number of	2000	16.95a	15.37b	14.28b	10.72d	18.37a	16.44b	17.20b	14.93c	**
unopen bolls	2001	16.75a	15.17b	14.13c	10.61d	18.22a	16.20b	16.99b	14.73c	*
	comb.	16.85a	15.27b	14.21b	10.67d	18.30a	16.32b	17.10b	14.83c	*
Boll weight	2000	3.31b	3.47a	3.41a	3.30b	3.31b	3.47a	3.44a	3.46a	**
(g)	2001	3.38b	3.54a	3.50a	3.38b	3.40b	3.53a	3.52a	3.53a	*
	comb.	3.35b	3.51a	3.46a	3.34b	3.36b	3.50a	3.48a	3.50a	*
Seed cotton	2000	1.279c	1.413b	1.651a	1.220d	1.581ab	1.500b	1.341c	1.595a	**
yield (t ha ⁻¹)	2001	1.353c	1.479b	1.734a	1.289d	1.664a	1.572b	1.415c	1.671a	**
(tha)	comb.	1.316c	1.446b	1.693a	1.255d	1.623a	1.536b	1.378c	1.633a	**

* T 120cm: topping at 120cm height

[†] SBP 120cm: side branch pruning at 120cm height

**,* and NS indicate P < 0.01, 0.05 and not significant, respectively.

Means followed by the same letter are not significantly different at 0.05 level according to L.S.D. test.

3.2.3 Earliness measurements

In general, earliness measurements indicated by days to first open boll, percentage of bolls on vegetative branches and earliness percentage were significantly different with plant growth alteration treatments (Table 3). It is well noticed that the control plants were more late for opening of the first boll than the treated plants. Reversely, based on higher percentage of bolls on vegetative branches and lower earliness percentage, topped, pruned or both plants markedly tended to be later in maturation than the control plants. These results could be ascribed to the basis that altering plant growth with topping and pruning increased fruiting attributes (Table 2), so boll production period was prolonged although boll opening was accelerated. BENNETT *et al.* (1965) found that topping did not affect days to boll maturity.

3.2.4 Seed cotton yield and its components

Data presented in Table 4 showed that altering plant growth by topping, pruning or its combination significantly increased seed cotton yield and some yield components compared with the control. Cotton plants topped at 120cm height alone surpassed those pruned at 120cm, topped + side branch pruning at 120cm height concerning number of open and unopen bolls per plants, while it had the lowest magnitude regarding boll weight. Cotton plants topped at 120cm or topped and pruned at 120cm height resulted in the highest seed cotton yield followed descendingly by those pruned at 120cm alone and topped + pruned at 100cm height. Such results could be explained on the basis that topping the apical bud of cotton plant particularly later in the season usually resulted in limited sympodial branches carrying more bolls on top ones which utilizes more assimilates. However, side branch pruning either alone or combined with topping lead to removing terminal squares of sympodia which may move excess flow of assimilates towards the remaining fruit forms that allow more and heavier bolls as well as it minimize boll infestation and maximize boll set. Such findings were obtained by BENNETT et al. (1965) and GU BENKANG et al. (1990) for seed cotton yield; AHMED and ABDEL-AL (1990) for boll weight, but reversely with number of open bolls and yield, GU BENKANG et al. (1990) for number of open bolls, PETTIGREW (1994) for boll weight.

3.2.5 Influence of the Interaction between plant population and plant growth alteration treatments

Data presented in Table 5 revealed noticeable effects for this factor on most traits studied except for number of main stem internodes, sympodia, additional fruiting branch boll, aborted sites, fruiting sites and days to first open boll per plant indicating the independent response of the later criteria for these factors. The remaining data could be summarized as follows:

- (1) Pruning at 120cm height and 40cm hill spacing gave the highest plant height while lowest one was obtained with topping + side branch pruning at 100cm height for the three hill spacings used.
- (2) The control plants of 40cm hill spacing gave the highest monopodia while the lowest one was gained with topping + side branch pruning at 100cm height and 30cm hill spacing.

Hill Spacing	Control	T 120cm*	SBP 120cm †	T+SBP 100cm	T+SBP 120cm						
Final plant height											
30cm	144.34b	120.00d	150.85a	100.00a	120.00d						
35cm	141.68c	120.00d	146.18b	100.00a	120.00d						
40cm	140.84c	120.00d	151.85a	100.00a	120.00d						
Number of monopodia											
30cm	0.38gh	0.33gh	0.41fg	0.25h	0.35gh						
35cm	0.66de	0.49fg	0.58ef	0.45fg	0.50fg						
40cm	1.96a	1.11c	1.29b	0.78de	0.90cd						
		Numb	er of retended bo	olls							
30cm	24.23j	39.81d	34.78g	32.76h	36.00fg						
35cm	27.66i	42.90c	37.81e	37.76ef	38.31de						
40cm	39.55de	50.14a	45.53b	42.16c	43.88bc						
	F	Percentage of	bolls on vegetati	ve branches							
30cm	5.11i	7.47f	5.72h	7.65f	7.87f						
35cm	6.43g	8.90e	7.27f	7.90f	9.17e						
40cm	11.30d	19.37b	16.54c	19.87a	20.47a						
		Ear	liness percentage	•							
30cm	74.10a	67.22ef	69.97cd	71.92bc	67.22ef						
35cm	73.13ab	66.97f	68.80de	68.07ef	66.60f						
40cm	69.00de	59.79h	61.77g	57.09i	54.92j						
		Nun	nber of open boll	s							
30cm	14.49m	19.87ij	, 17.97	16.571	20.54hi						
35cm	18.39jk	25.77de	23.52	22.17gh	24.22ef						
40cm	30.44c	35.90a	31.24	26.27d	32.50b						
		Num	ber of unopen bo	lls							
30cm	11.07ef	21.14a	18.00bc	17.38bc	16.65cd						
35cm	10.47f	18.32b	15.48d	16.82bcd	15.29d						
40cm	10.47f	15.43d	15.49d	17.07bc	12.57e						
			Boll weight (g)								
30cm	3.20e	3.22e	3.40d	3.44cd	3.47bcd						
35cm	3.42d	3.44cd	3.65a	3.50bc	3.54b						
40cm	3.40d	3.42d	3.45cd	3.52bc	3.48bcd						
		Seed o	otton yield (t ha	⁻¹)							
30cm	1.009i	1.380fg	1.349fg	, 1.263gh	1.577cde						
35cm	1.132h	1.580cd	1.569cde	1.403f	1.548de						
40cm	1.622cd	1.908a	1.690bc	1.469ef	1.775b						

Table 5: Means of some traits of Pima S2 cotton cultivar significantly affected by theinteraction between hill spacing and plant growth alteration treatments (com-bined data of both 2000 and 2001 Seasons).

 * T 120cm: topping at 120cm height; † SBP 120cm: side branch pruning at 120cm height Means followed by the same letter are not significantly different at 0.05 level according to L.S.D. test.

- (3) Topping plants at 120cm height and 40cm hill spacing resulted in the highest number of retended bolls, open bolls and seed cotton yield while the lowest ones were obtained with control plants and 30cm hill spacing.
- (4) Topped and pruned plants at 120cm height and 40cm hill spacing produced the highest percentage of bolls on vegetative branches while the lowest one was obtained with the control plants and 30cm hill spacing.
- (5) Control plants and 30cm hill spacing gave the highest earliness percentage while the lowest one was obtained with topping + side branch pruning at 120cm height and 40cm hill spacing.
- (6) Cotton plants topped at 120cm height and 30cm hill spacing induced the highest number of open bolls while the lowest one resulted from the control plants and 30cm hill spacing.
- (7) Pruned plants at 120cm height and 35cm hill spacing gave the highest boll weight while the lowest one was obtained with the control plants and 30cm hill spacing.

Roy *et al.* (1989) observed that the interaction effect of two plants per hill having spacing 60×20 cm and topping at 45 days gave the highest seed cotton yield whereas the lowest one was obtained by two plants per hill having spacing 63×20 cm and topping at 75 days after emergence.

4 Conclusions

The study has demonstrated that wider hill spacing and plant alteration treatments had beneficial influence on some vegetative and fruiting growth habits, seed cotton yield and its component. Topping at 120cm height increased the number of fruiting sites and retended bolls. Hill spacing of 40cm reduced final plant height but increased number of fruiting sites, retended bolls and seed cotton yield. Topping at 120cm height and 40cm hill spacing gave the highest number of open bolls, retended bolls and highest seed cotton yield.

Acknowledgement

I thank the Institute for Agricultural Research (IAR) Samaru, Zaria and Department of Crop Production, University of Agriculture, Makurdi, Nigeria, for providing the materials and facilities used in the study.

References

- ABDEL-MALIK, R. R., EL-SHAHAWY, M. I. and ABDEL-AL, S. A.; Improvement of Cotton production throughout a new planting method (square contour lines); *Egypt. J. Appl. Sci.*; 10(6):270; 1995.
- AHMED, F. M. and ABDEL-AL, M. H.; Effect of Defloration treatments on cotton yield; *Annals of Agric. Sci.*; 33(2):941–950; 1990.
- BENNETT, O. L., ASHLEY, D. A.AND DOSS, B. D. and SCARCBROOK, C. E.; Influence of topping and side pruning on cotton yield and other characteristics; *Agron. J.*; 57(1):25 27; 1965.

- EL-DEBABY, A. S., HAMMAM, G. Y. and NAGIB, M. A.; Effect of planting date, N and P application levels on the yield of Giza 80 Cotton cultivar; *Annals of Agric. Sci.*; 33(2):465 – 481; 1995.
- EL-GANAYNI, A. E., FOUAD, M. H. and EL-KIRSH, I. A.; Effect of topping cotton plants on yield and other characteristics; *Agric. Res. Rev.*; 62(6):157 163; 1984.
- GU BENKANG, C. C., LI, J. and ZHIGANG, J.; Effects of removing basal fruiting branches at squaring stage on cotton yield; *Jiangsu J. of Agric. Sci.*; 6(2):7 12; 1990.
- GUTHRIE, H. D. and MCCARTY, W.; Balancing plant and crop performance; otton physiology today, Newsletter of cotton physiology education programmes, National Cotton council of America, 4, No. 3; 1993.
- HOSNY, A. A., EID, H. M. and ZIADAH, K. A.; Prediction of optimum density and row spacing for cotton in different regions of Egypt; *Annals of Agric. Sci.*; 33(1):1–20; 1995.
- KENNEDY, C. W., SMITH, W. C. J. and JONES, J. E.; Chemical efficacy of early square removal and subsequent productivity of cotton; *Crop Sci.*; 31(3):791 – 796; 1991.
- KITTOCK, D. L. and FRY, K. E.; Effect of topping Pima Cotton on lint yield and boll retention; *Agron. J.*; 69:65 67; 1977.
- MAKRAM, E. A., EL-SHAHAWY, M. I., EL-GAHEL, S. F. and ABDEL-MALIK, R. R.; Effect of hill spacing, soil fertilization and earliness in Egyptian cotton cultivars; *J. Agric. Mansoura Univ.*; 19(1):1 – 13; 1994.
- NAGUIB, M., EL-SAYED, A. B. and KHATTAB, A. K.; Effect of cutting the terminal shoots (topping) of cotton plants on the population density of egg-masses of the cotton leaf-worm (*Spodoptera littoralis*, Boisd.) and on the cotton yield; *Agric. Res. Rev.*; 56:9 – 15; 1987.
- NIKOLOV, G.; The optimum plant density of cotton; *Rasteniex dni Nauki.*; 18(7):77 85; 1980; c.f. Field Crop Abstr. 36(7), 6971 (1983).
- PETTIGREW, W. T.; Source-to-sink manipulation effects on cotton lint yield and yield components; Agron. J.; 86(4):731 – 735; 1994.
- RISHA, A. A. M.; Effect of plant population density and nitrogen fertilization on some Egyptian cotton varieties; Ph.D. thesis; Faculty of Agric. Al-Azhar Univ.; Egypt; 1993; pp. 123 - 134.
- ROY, N. C., SARKAR, R. A. and MALEK, M. A.; Effect of topping on cotton at different plant population; Proceedings of the 14th Annual Bangladesh Sci. Conf. Section 1 - Dhaka, Bangladesh; BAASP. 103; 1989.
- SNEDECOR, G. W. and COCHRAN, W. G.; Statistical Method., 6th Edition,; Iowa State Univ. Press, Iowa, U.S.A.; 1967.
- STEEL, G. D. and TORRIE, J. H.; *Principles and procedures of statistics*; McGraw Hill Book Company Inc., New York; 1980; pp. 481.
- WAGGONER, P. E. and MOSS, D. N.; Radiation in the plant environment and photosynthesis; Agron. J.; 55:36 – 39; 1963.