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Abstract

Due to growing land scarcity and lack of nutrient inputs, African farmers switched from shifting cultivation to continu-
ous cropping and extended crop area by bringing fragile lands such as river banks and hill slopes into production. This
accelerated soil fertility decline caused by erosion, harvesting and insufficient nutrient replenishment. We explored the
feasibility to reduce nutrient depletion by increasing nutrient utilization efficiencies, while diversifying and increasing
food production through the development of integrated aquaculture – agriculture (IAA). Considering the climatic con-
ditions prevailing in Kenyan highlands, aquaculture production scenarios were ideotyped per agro-ecological zone.
These aquaculture production scenarios were integrated into existing NUTrient MONitoring (NUTMON) farm survey
data for the area. The nutrient balances and flows of the resulting IAA-systems were compared to present land use.
The effects of IAA development on nutrient depletion and total food production were evaluated. With the develop-
ment of IAA systems, nutrient depletion rates dropped by 23–35%, agricultural production increased by 2–26% and
overall farm food production increased by 22–70%. The study demonstrates that from a bio-physical point of view,
the development of IAA-systems in Africa is technically possible and could raise soil fertility and total farm produc-
tion. Further studies that evaluate the economic feasibility and impacts on the livelihood of farming households are
recommended.
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1 Introduction

Loss of soil fertility is a major setback in agricultural
production in Africa (Stoorvogel et al., 1993; Gruhn
et al., 2000). While on average nitrogen losses of
22 kg ha−1 year−1 have been estimated for sub-Saharan
Africa (Stoorvogel et al., 1993), up to 76 kg ha −1 year−1

of nitrogen losses have been reported for arable lands
in various African countries (Shepherd et al., 1995,

∗Corresponding author
Tel. 254724993404
Email: pmuendo@yahoo.com
South Eastern University College (a constituent college of the
University of Nairobi), P.O Box 170-90200, Kitui, Kenya

1996; Nandwa & Bekunda, 1998; Wortmann & Kaizzi,
1998; Shepherd & Soule, 1998; Baijukya & Steen-
huijsen Piters, 1998; Defoer et al., 1998; Mohamed-
Saleem, 1998).

Nutrient losses to erosion, in combination with nu-
trient removal through cropping and insufficient nutri-
ent inputs, have contributed to the observed decline of
soil fertility (Kumwenda et al., 1996; Mango, 1996;
Gruhn et al., 2000). Growing land scarcity has led to
increased utilization of land for cultivation resulting in
a decline in fallowing, previously used for soil nutrient
replenishment (Mango, 2002). Grazing areas have also
been cleared for cultivation leading to a decline in cat-
tle population and less manure availability for soil nu-
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trient replenishment. Nutrient replenishment through
application of inorganic fertilizers is constrained by
high costs that make them unaffordable to most farmers
(FAO, 1995; Nandwa & Bekunda, 1998; Gruhn et al.,
2000). With the land shortage and lack of nutrient in-
puts, farmers intensify crop production through reliance
on continuous cropping and other inappropriate land use
practices, such as cultivation on river banks and hill
slopes, which increase susceptibility of the land to ero-
sion (Thomas, 1988).

To reduce the ongoing nutrient depletion, research
focus is shifting towards technologies that allow for
more efficient recycling of available organic nutrient
resources, and that result in conservation of existing
soil nutrient resources, e.g., interception of erosion
and leaching (Smaling & Janssen, 1993; Buresh et al.,
1997). Crop residues and other farm residues should
be recycled on farm (Reijntjes et al., 1992; Nandwa &
Bekunda, 1998). Unfortunately, re-utilization of farm
residues is constrained by a temporal mismatch between
availability and application (Prein, 2002). Available
residues can be stored through composting for later use.
However, in the process of composting, high nutrient
losses occur through gaseous losses (Karlsson & Jepp-
son, 1995; Eghball et al., 1997) and nutrient leaching
(Petersen et al., 1998; Sommer, 2001). Nitrogen losses
of 5–77% during composting have been reported (Mar-
tins & Dewes, 1992; Eghball et al., 1997; Petersen et al.,
1998; Thomsen, 2000). Diversification of African farm-
ing systems and incorporation of additional farm activ-
ities may have a potential for higher efficiencies in nu-
trient recycling (Stoorvogel & Smaling, 1990; Buresh
et al., 1997).

In Asia, such diversification of farming systems have
been practiced in integrated fish – livestock – crop sys-
tems. Crop, vegetable wastes, and livestock droppings
are used as fish pond inputs and when silt gradually re-
duces the pond depth, it is removed and thrown on the
surrounding dikes. Vegetables, crops, and fruits are suc-
cessfully planted on these dikes. Nutrient dynamics and
sustainability of such integrated systems are yet to be
studied in more depth, but increased profits from fish,
animal and crop production, due to reduced costs of
feeds and chemical fertilizers, have been reported (Little
& Muir, 1987; Prein, 2002).

In Africa, ponds are still a rare component of
local farming systems. Development of integrated
aquaculture-agriculture (IAA) systems in African farm-
ing could reduce the on-going nutrient depletion. If
ponds are located in low lying areas of the farm, they

can trap run-off water and sediments rich in nutrients
and utilize crop and animal residues year-round. Pond
sediments can subsequently be used at any time as an
on-farm crop fertilizer and improve on-farm nutrient re-
tention and utilization efficiencies. They would not only
serve to combat nutrient depletion, but would also im-
prove household nutrition and income by adding a new
protein source to the diet which in addition is a potential
cash crop.

This paper explores the feasibility of integrating fish
ponds in African farming systems. Based on existing
farm survey data sets available from extensive NUTrient
MONitoring (NUTMON) studies in Africa (De Jager
et al., 1998; van den Bosch et al., 1998b), and using
Kenyan highlands as a case study, an aquaculture com-
ponent (fish pond) was ideotyped within existing farm-
ing systems. Nutrient balances of the resultant ideotype
IAA systems were calculated and in comparison with
those of the existing farming systems, the effects of fish
ponds integration on nutrient depletion and food pro-
duction were evaluated and quantified. The study fo-
cused on nitrogen because it is the major critical element
limiting productivity in both aquatic and terrestrial envi-
ronments in Africa (Vitousek et al., 1997; Shepherd &
Soule, 1998), and is closely linked with the overall soil
condition, including organic matter content (Sekhon &
Meelu, 1994).

2 Materials and methods

2.1 Study area

In 1997, a NUTMON study was carried out in Embu
district in the Eastern Province of Kenya (00° 8’ South-
ern latitude and 00° 50’ and 37° 3’ and 37° 9’ Eastern
longitude) (van den Bosch et al., 1998b). The district
rises from about 515 m above sea level at the River Tana
Basin in the east to 4,570m on the top of Mt. Kenya in
the North-West. It is characterised by hills and valleys
to the northern and eastern parts and steep slopes at the
foot of Mt. Kenya. Variations in altitude, rainfall and
temperature between highlands and lowlands, coupled
with differences in geology, result in varying agricul-
tural potential. Average rainfall increases with altitude
from 640 mm to 2000 mm per year. The upper highland
areas are cool, wet and steep and forestry is the main
land use while in the lower highlands, coffee and tea are
grown. In the low lying areas, cash crops such as cot-
ton and tobacco and food crops such as maize and millet
are grown and livestock is kept. The district shows the
typical agro-ecological profile of the windward side of
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Table 1: Characteristics of the 5 agro-ecological zones (AEZ)

Characteristic
Agro-ecological zones

AEZ 1 AEZ 2 AEZ 3 AEZ 4 AEZ 5

Altitude (m.a.s.l.) 1770 1590 1320 980 830

Annual mean temp. (°C) 16.8 18.2 20.2 21.4 22.6

Annual average rainfall (mm) 1750 1400 1200 900 800

Main soil types Andosol/Nitosol Nitosol Nitosol Nitosol/Combisol Arenosol

Mt. Kenya. Five agro-ecological zones were identified
in previous studies (FURP, 1987) and the present study
covers those five zones (Table 1).

2.2 NUTMON

The NUTMON toolbox was developed as a monitor-
ing tool for soil nutrient balances. The toolbox (van den
Bosch et al., 1998a) allows for monitoring actual nutri-
ent flows on the farm and to calculate soil nutrient bal-
ances. The balances are based on an accounting exercise
in which the net balance equals the sum of the nutrient
inputs minus the sum of the outputs. Table 2 provides an
overview of the various inputs and outputs considered.

Table 2: Nutrient inputs and outputs

Nutrient inputs Nutrient outputs

IN 1 Mineral fertilizer OUT 1 Crop product

IN 2 Organic fertilizer ∗ OUT 2 Crop residues †

IN 3 Atmospheric deposition OUT 3 Leaching

IN 4 Nitrogen fixation OUT 4 Denitrification

IN 5 Sedimentation OUT 5 Erosion

∗ including feeds, organic fertilizer, external grazing, and im-
ported food
† including crop residues but also manure from the SPU and
grass through grazing

The farming system is subdivided into a number of
compartments including:

a. the primary production units (PPU’s) which include
fields with crops or grassland,

b. the secondary production units (SPU’s) which in-
clude the animals on the farm,

c. the household (HH) defined as the actual household
with all the people that spend a significant amount of
time on the farm,

d. the redistribution units (RU) which are locations
within the farm where nutrients are collected or
accumulated and from where nutrients are redis-
tributed over the farm (including e.g., garbage heaps
and stables),

e. the stock which allows for temporary storage of e.g.,
crop products and fertilizer on the farm.

During monitoring the various management-related nu-
trient flows were recorded. This includes IN 1, IN 2,
OUT 1, and OUT 2 as indicated in Table 2. Other flows
are not recorded and will have to be estimated in a later
stage using simple transfer functions or models. The
NUTMON-toolbox makes calculations for the various
compartments and the sum of the various compartments
yields the farm balance.

2.3 NUTMON data, Embu district, Kenya

The NUTMON study monitored 15 farms in Embu
province during a two year survey. Each of the five agro-
ecological zones (AEZ) included three farms of which
one single farm with a representative cropping pattern
and management was selected.

On a typical farm up to 14 different PPU’s and five
different SPU’s were observed. For this explorative ex-
ercise the various PPU’s were aggregated into a single
overarching PPU. Similarly, the SPU’s and RU’s were
aggregated. Given the long term evaluation, in this
manuscript we assumed the stock and the HH to be con-
stant. They were therefore excluded from the analysis.
As a result, the farming systems were described by three
compartments, the PPU, SPU and RU.

2.4 Data analysis

The NUTMON-toolbox has proven to be a valuable
tool to evaluate farming systems under all kind of agro-
ecological conditions. It allows people to determine
where major losses of nutrients take place and get a
better understanding of the farming system. However,
the system does not include the required feedbacks that
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would allow for an evaluation of alternative interven-
tions. As such, the existing NUTMON methodology
does not serve the purposes of this manuscript to ideo-
type a farming system comprising a fish pond. To do
so, feedbacks necessary to dynamically model the farm-
ing system were incorporated in NUTMON. Here, we
report on the various adaptations that were made to the
standard NUTMON methodology (De Jager et al., 1998;
van den Bosch et al., 1998a).

For the aggregated PPU we derived a number of basic
properties: the current productivity, the harvest index,
average nitrogen concentration of inputs and outputs,
and the level of inputs. Crop growth simulation is often
described as the exponential relationship between nu-
trient availability (Navail) and nutrient uptake (Nuptake).
Nitrogen availability was calculated on the basis of soil
nitrogen contents, bulk density, and estimated mineral-
ization rates plus nitrogen supplied through the various
inputs. Subsequently, we defined the following expo-
nential model:

Nuptake = c0 + c1 e−c2 Navail

The three constants were estimated using the observed
nitrogen uptake in the system and an assumed 50 % ni-
trogen use efficiency for the current systems which cor-
responds to the results of a large fertilizer use recom-
mendation program in Kenya (Smaling et al., 1992).

The current efficiency of the various redistribution
units is set at 30 % corresponding to the observed rates
(ratio of nitrogen input and output) in various Kenyan
studies (Rufino et al., 2006).

While making changes in the farming system, the sec-
ondary production unit is maintained (in other words the
number of animals is kept constant). Lack of food is
compensated for by external feeding. A surplus of food
enters the redistribution units and will leave as part of
the farm yard manure. This is often observed in the ex-
tensively managed ‘bomas’ (animal stables) where crop
residues are left on the ground and mix with manure.
Note that feeding requirements have been defined in
NUTMON and were kept the same.

Management decisions in terms of use of e.g., crop
residues are derived from the initial datasets and flows
are redefined in per cent terms. For example, part of the
crop residues may be incorporated in the soil, another
part may be fed to the animals, and finally a fraction
may be sold. The fractions are calculated as observed in
the system and kept constant even if the total production
of residues increases or decreases.

2.5 Ideotyping fishponds

In idiotyping fish ponds for potential integration in
the farming systems, the following further adaptations
were made. (A) Immediate re-utilization (in fish ponds)
of nutrients that accumulate in the RU is expected to
result in reduced nutrient losses from the RU due to
reduced storage period and improve the RU efficiency.
As such, the efficiency of the RU was re-set at 60 %
(Lekasi et al., 2001; Woomer et al., 1998; Kirchman
et al., 1985). (B) To increase nutrient use efficiency,
70 % of nutrients from RUs, currently applied to PPUs,
were re-allocated to fish production assuming their com-
pensation on re-utilization of enriched pond sediment
on crop fields. (C) The sum of the nutrients that be-
came available due to increased RU efficiencies and the
70 % re-allocated from PPUs was set as the quantity
of nutrients available in the farm for aquacultural use.
Based on a reported nitrogen application requirement
rate of 4 kg ha−1 day−1 in tropical fish ponds (Knud-
Hansen et al., 1993), and assuming a 12 month culture
period, the size of fish pond that can be supported with
the available nutrients was determined. (D) Interception
of nutrients contained in eroded sediments by the fish-
pond was set at 50 %, an average drawn from reported
rates of 21–100% sediment trap efficiency by small re-
tention ponds constructed on drainage ways of cropped
fields (Fiener et al., 2005; Verstraeten & Poesen, 2001;
Renwick et al., 2005). (E) Annual atmospheric nitrogen
deposition in ponds was calculated following the NUT-
MON calculation as 0.014 × √rain f all (in mm/year)
(Stoorvogel et al., 1993).

Based on averages of pond nutrient flows for semi-
intensive tropical ponds available in literature, pond nu-
trient balances were calculated as follows:

(i) Nitrogen fixation of 24 mg N m−2day−1 (Acosta-
Nasser et al., 1994),

(ii) Fish retain 20 % of total nitrogen input (Green &
Boyd, 1995; Acosta-Nasser et al., 1994),

(iii) 65 % of total nitrogen inputs accumulate in pond
sediments (Acosta-Nasser et al., 1994),

(iv) 10 % of total nitrogen inputs are lost through den-
itrification, volatilization and leaching (Briggs &
Funge-Smith, 1994; Lorenzen et al., 1997; Gross
et al., 2000),

(v) Drainage water contains 5 % of the nitrogen input
(Green & Boyd, 1995).
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Table 3: Nutrient balance in current farming systems in Embu district, Kenya

AEZ 1 AEZ 2 AEZ 3 AEZ 4 AEZ 5

PPU SPU RU FP PPU SPU RU FP PPU SPU RU FP PPU SPU RU FP PPU SPU RU FP

Area (ha) 1.21 – – 0 1.41 – – 0 3.51 – – 0 2.12 – – 0 2.28 – – 0

Inputs

Mineral fertilizer 139 0 0 0 111 0 0 0 25 0 0 0 131 0 0 0 0 0 0 0
Organic fertilizer/feed 46 133 113 0 56 211 179 0 42 129 109 0 65 162 138 0 66 168 184 0
Atmospheric deposition 8 0 0 0 9 0 0 0 22 0 0 0 12 0 0 0 11 0 0 0
Nitrogen fixation 6 0 0 0 7 0 0 0 18 0 0 0 11 0 0 0 12 0 0 0
Sedimentation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total IN 199 133 113 0 183 211 179 0 107 129 109 0 219 162 138 0 89 168 184 0

Outputs

Crop/animal products 58 13 0 0 19 21 0 0 57 13 0 0 56 16 0 0 66 17 0 0
Crop residues 145 113 34 0 44 179 54 0 73 109 33 0 127 138 41 0 10 142 55 0
Leaching 85 0 79 0 67 0 126 0 112 0 77 0 74 0 96 0 41 0 129 0
Denitrification 32 0 0 35 0 0 62 0 0 31 0 0 4 0 0
Erosion 13 0 0 0 182 0 0 0 154 0 0 0 18 0 0 0 134 0 0 0

Total OUT 333 126 113 0 346 200 179 0 458 122 109 0 306 154 138 0 255 159 184 0

Net balance –134 7 0 0 –163 11 0 0 –351 6 0 0 –87 8 0 0 –166 8 0 0

Depletion rate (kg/ha/year) 111 116 100 41 73

AEZ = agro-ecological zone, PPU = primary production unit, SPU = secondary production unit, RU = Redistribution unit and FP = fish pond

2.6 Effects of fish pond integration

With the integration of the fish pond, the farming sys-
tem is now described by the PPU, SPU, RU, and Fish
Pond (FP). It should be noted that NUTMON fishponds
are often considered as redistribution units (Phong et al.,
2011). Given the specific focus of the fishponds in the
manuscript, they were examined separately. Nutrient
balances of the ideotyped IAA-systems were calculated
considering the various inputs and out puts (Table 2),
assuming that incorporation of pond sediment nutrients
in PPUs (IN 5) is 100% and that the incorporation of
nutrients contained in drainage water from ponds (for
irrigation purposes) is 50% and is included in the PPU
balance (combined with pond sediment) as IN 5 (sedi-
mentation).

Nutrient depletion rates and overall food production
in the ideotyped IAA-systems were compared with
those in the existing farming systems and the differences
were evaluated and quantified.

3 Results

3.1 Nutrient balances of existing farming systems

In the nutrient balances of existing farming systems,
the major nutrient inputs to the PPUs are mineral and
organic fertilizers, while crop products, crop residues,
leaching and erosion are all major nutrient outputs (Ta-

ble 3). There was a high variation in nutrition balances
between farms.

The sources of the organic fertilizer input to the PPUs
include the RUs and household wastes (organic fertilize
input – RU crop residue output). The majority of the
crop residues from the PPU are recycled as organic
feeds to the SPUs and the remainder is incorporated into
the fields or sold (as observed in the NUTMON flows).
Organic feeds (crop residues from PPUs + external
supplemental feeding) are the main input to the SPU.
Of the total SPU inputs, 10 % is contained in harvested
animal products and 85 % is excreted as manure. All
excreted manure is stored in the RUs (main RU input)
where 70 % of the nutrients are lost to leaching and
denitrification and the remaining 30 % is recycled in
the PPUs. At all zones, total nutrient outputs from the
PPUs are higher than total inputs resulting in nutrient
depletion rates ranging from 40 to 116 kg N/ha/year.
Overall food production in the farms (crop products in
PPU + in SPU) range from 40–83 kg N/farm/year.

3.2 Nutrient balances of the ideotyped IAA-systems

With the estimated reduction in N losses in RUs and
the decrease of organic inputs in PPUs (section 2.5), 56
to 94 kg nitrogen per year became available for pond
use. These quantities were sufficient to support ponds
ranging between 400 and 700 m2 in size (Table 4).
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Table 4: Ideotyped aquaculture units (fish pond) for integration in existing farming systems

AEZ 1 AEZ 2 AEZ 3 AEZ 4 AEZ 5

N available for use in pond (kg)

From increased RU efficiency 34 54 33 41 55

Re-allocated from PPU inputs 24 38 23 29 39

Total 58 92 56 70 94

Possible pond size (m2) – 600 400 500 700

IAA-systems were not ideotyped for the farming sys-
tem in AEZ 1 due to unavailability of information on
nutrient utilization efficiencies in ponds at low temper-
atures (Table 1). The major pond nutrient inputs are
organic fertilizer (manure from RU) and sediments (in-
tercepted erosion). Compared to the existing farming
systems (Table 3), nutrient depletion rates were lower,
ranging between 30 and 89 kg N/ha/year in AEZ 2–
5, and overall food production (products in PPU, SPU,
and FP) was higher, ranging between 81 and 129 kg
N/farm/year (Table 5).

3.3 Effects of fish ponds integration

Because a part of the land is converted into fish ponds,
the PPU area in the ideotyped IAA-systems is 1–4 %
smaller than in the original farms. On the other hand,
the nutrient inflow to the PPU is 11–69% higher in ideo-
typed IAA-systems due to additional input from pond
sediments. Based on increased nutrient inputs, crop pro-
duction in the PPU is 2–26 % higher in ideotyped IAA-
systems than in the existing farming systems despite the
reduction in PPU land area. Increased crop production
plus new fish yields raise the overall food production in
ideotyped IAA-systems by 22 to 70 % (Table 6). Mainly
due to an increase in total PPU inputs, ideotyped IAA-
systems nutrient depletion rates were 23–35% lower
than in existing farming systems (Table 6).

4 Discussion

The results have demonstrated that development of
IAA-systems in African farming would improve nutri-
ent use efficiencies and enable increased food produc-
tion while reducing soil fertility losses (Table 5 and 6).
These positive impacts are achieved because of the pos-
sibility of the aquaculture component to (i) utilize avail-
able farm residues (e.g., a variety of animal manures,
crop residues, and household residues) as fish pond nu-
trient inputs, (ii) trap and retain nutrients in pond sedi-
ments and (iii) operate year round.

As a fish feed, terrestrial vegetation results in neg-
ligible fish growth due to its low palatability and di-
gestibility (Castanares et al., 1992). However, appli-
cation of composted green manures resulted in net fish
yields of up to 3 tons ha−1 year−1 (Veverica et al., 1990;
Rurangwa et al., 1990; Chikafumbwa et al., 1993). A
variety of animal manures such as chicken litter, cow
dung, buffalo and pig manures have been used success-
fully to provide nutrients to tropical and sub-tropical
ponds (Hopkins & Cruz, 1982; Green et al., 1989)
and 6–10 tons ha−1 year−1 were produced (Wohlfarth &
Schroeder, 1979; Schroeder, 1980; Schroeder et al.,
1990; Knud-Hansen et al., 1993). Fish production in
manure driven ponds is primarily phytoplankton based
(Colman & Edwards, 1987; Knud-Hansen et al., 1993).
Manures decompose slowly releasing inorganic nutri-
ents which stimulate algal production. Since on-land
composting results in a net loss of carbon and nitro-
gen through leaching (Lin et al., 1997), farmers (in e.g.,
Rwanda) have developed in-pond composting methods.
Grass, kitchen waste and animal manure are added to
enclosures built within the ponds where the decom-
posing wastes are regularly stirred to release nutrients
(Veverica et al., 1990). Although on-farm residues are
high in carbon and consume large amounts of dissolved
oxygen during decomposition (Lin et al., 1997), care-
ful management of application rates will alleviate this
constraint (Veverica et al., 1990). Besides tropical fish
species such as Tilapia sp. tolerate large dial dissolved
oxygen fluctuations (Popma & Lovshin, 1995)

The ability of aquaculture ponds to trap and retain nu-
trients in sediments has been demonstrated in numerous
studies. On average, 20–30% of the total nitrogen in-
put to aquaculture ponds is retained in fish (Avnimelech
& Lacher, 1979; Boyd, 1985; Krom et al., 1985; Porter
et al., 1987; Green & Boyd, 1995) and up to 80 % is
retained in the pond sediment (Avnimelech & Lacher,
1979; Schroeder, 1987; Myint et al., 1990; Acosta-
Nasser et al., 1994; Briggs & Funge-Smith, 1994; Olah
et al., 1994). Besides the retention of a large proportion
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Table 5: Nutrient balance in current farming systems in Embu district, Kenya

AEZ 2 AEZ 3 AEZ 4 AEZ 5

PPU SPU RU FP PPU SPU RU FP PPU SPU RU FP PPU SPU RU FP

Area (ha) 1.35 – – 0.06 3.47 – – 0.04 2.07 – – 0.05 2.21 – – 0.07

Inputs

Mineral fertilizer 111 0 0 0 25 0 0 0 131 0 0 0 0 0 0 0

Organic fertilizer/feed 18 211 179 91 20 129 109 56 37 162 138 70 27 168 185 94

Atmospheric deposition 8 0 0 0.4 22 0 0 0.2 12 0 0 0.3 11 0 0 0.3

Nitrogen fixation 7 0 0 0.2 18 0 0 0.1 11 0 0 0.2 12 0 0 0.2

Sedimentation + irrigation 121 0 0 87 89 0 0 76 54 0 0 9 108 0 0 65

Total IN 265 211 179 179 173 129 109 132 244 162 138 79 158 168 185 160

Outputs

Crop/animal products 24 21 0 36 64 13 0 26 57 16 0 16 80 17 0 32

Crop residues 56 179 108 0 82 109 66 0 128 138 83 0 12 143 111 0

Leaching/pond drainage 73 0 72 9 118 0 44 7 75 0 55 4 51 0 74 8

Denitrification 38 0 0 18 65 0 0 13 31 0 0 8 5 0 0 16

Erosion/pond sediment 174 0 0 116 152 0 0 86 18 0 0 52 131 0 0 104

Total OUT 366 200 179 179 481 122 109 132 309 154 138 79 278 160 185 160

Net balance –101 11 0 0 –308 6 0 0 –65 8 0 0 –120 8 0 0

Depletion rate (kg/ha/year) 75 89 31 54

AEZ = agro-ecological zone, PPU = primary production unit, SPU = secondary production unit, RU = Redistribution unit and FP = fish pond

Table 6: A summary of the main differences in the nutrient balances of the existing farming systems (Table 3) and of the ideoyped
IAA systems (Table 5) for Embu district, Kenya

AEZ 2 AEZ 3 AEZ 4 AEZ 5

Existing IAA % change Existing IAA % change Existing IAA % change Existing IAA % change

PPU area (ha) 1.41 1.35 –4 3.51 3.47 –1 2.12 2.07 –2 2.28 2.21 –3

Total PPU input (kg) 183 265 45 107 173 62 219 244 11 89 158 69

PPU crop products 19 24 26 57 64 12 56 57 2 66 80 21

Depletion rate (PPU) 116 75 –35 100 89 –23 41 31 –23 73 54 –25

Overall food production 40 81 22 70 103 58 72 89 30 83 129 70

of nitrogen inputs in aquaculture ponds, small retention
ponds constructed on spillways in hilly areas could trap
21–100% of soil eroded from fields in the upper slopes
(Fiener et al., 2005; Verstraeten & Poesen, 2001; Ren-
wick et al., 2005).

Fish ponds need to be operational year-round to allow
instant utilization of farm residues and to minimise nu-
trient losses during storage in the RUs. The tropical con-
ditions in sub-Saharan Africa favour year-round pond
aquaculture. However, in high altitude areas, tempera-
ture becomes sub optimal. Nile tilapia, the commonly
cultured species in Africa, grows best at 25–28°C and

stops growing below 20 °C (Popma & Lovshin, 1995).
In areas where temperatures drop below 20 °C, more
cold tolerant species should be stocked. Various carp
species thrive well at 17–37°C (Coutant, 1977; Jhin-
gran, 1982). When temperatures drop below 17 °C for
extended periods of the year, trout which grows best in
12–18°C waters could be farmed (Shelton, 1994). Thus,
considering the temperature regimes in the various agro-
ecological zones (Table 1) suitable culture species are:
tilapia in AEZ 3–5, carp in AEZ 2 (but also possible in
AEZ 3–5) and trout in AEZ 1.
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Nutrient pond budget studies from low temperature
areas comparable to AEZ 1 are not available. Available
data on nutrient dynamics in tropical ponds is mainly
based on fish culture within a temperature range of 20–
40 °C. However, reported pond nutrient balances for
carps under semi-intensive conditions in a temperate cli-
mate (Olah & Pekar, 1992) are within the same range.
Therefore, the same balances were used to ideotype IAA
systems in AEZ 2 – AEZ 5. Because of the lack of data,
IAA-systems were not ideotyped for AEZ 1.

High water quality is essential to produce trout in
ponds. The water should be below 18 °C, clear, dis-
solved oxygen levels should be 5–12 mg l−1 and pH lev-
els 6.5–8.5 (Shelton, 1994). Grown purely on natural
foods, trout yield are 100–150kg ha−1 year−1 and yields
of 1000–2000kg ha−1 year−1 are achievable with feed-
ing (Marriage et al., 1971), which increases production
costs by 60% (Sloene, 1994). Such characteristics make
trout farming unsuitable for small-scale IAA-systems
since organic wastes, but not formulate feeds, are the
available nutrient inputs. Due to high respiratory de-
mand of bacterial degradation of organic wastes, night
and dawn oxygen levels below 5 mg l−1 are common in
organically fertilized ponds (Popma & Lovshin, 1995),
and pond waters are turbid, mainly due to high plankton
concentrations. In addition, trout farming in small-scale
ponds may not be economically feasible.

Carps and tilapia are omnivores (Jhingran, 1982;
Popma & Lovshin, 1995), growing well in organic
wastes driven ponds (Nandeesha, 1982). They are toler-
ant to high fluctuations in water quality, capable of toler-
ating low oxygen levels (Huet, 1972; Popma & Lovshin,
1995) and production of 3000–8000kg ha −1 year−1 were
achieved in organically fertilized ponds (Popma &
Lovshin, 1995; Pekar & Olah, 1991). These character-
istics make them suitable culture species for small-scale
IAA-systems where on-farm residues are the available
pond nutrient sources.

Therefore, based on available literature, as demon-
strated in the foregoing discussion, the required char-
acteristics of the aquaculture component are possible in
most of the agro-ecological zones. An important fac-
tor for successful integration of the various components
of the IAA-systems is the utility of pond sediment to
fertilize crops. Studies in Thailand, The Philippines
and Japan showed that incorporating pond sediments in
degraded rice fields increased productivity for several
years (Mochizuki et al., 2006). The pond sediments
are commonly used to sustain rice productivity (Con-
klin, 1980; Furukawa, 1997) or to improve the chemical

and physical properties of soils (Iwata et al., 1973; Mat-
sushima, 1980).

In conclusion, this explorative study shows that from
a bio-physical point of view, the development of IAA-
systems in Africa is technically possible and would
results in improved soil fertility management and in-
creased total farm production. In a further step, eco-
nomic feasibility and on-farm conditions (e.g., avail-
ability of water, and soil characteristics) should be con-
sidered. A pilot study, monitoring IAA-system nutri-
ent budgets, while recording economic feasibility and
impacts on the livelihood of farming household, is rec-
ommended as the next step towards the development of
IAA-systems in Africa.
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